## Pharmacological characterization of presynaptic $\alpha$ -adrenoceptors which regulate cholinergic activity in the guinea-pig ileum

## G.M. DREW

Department of Pharmacology, Allen & Hanburys Research Ltd, Ware, Hertfordshire SG12 ODJ, U.K.

Field stimulation of the guinea-pig ileum releases acetylcholine from cholinergic nerves and causes contraction of the longitudinal muscle. The contraction is inhibited by  $\alpha$ - and  $\beta$ -adrenoceptor agonists.  $\beta$ -Adrenoceptor agonists stimulate  $\beta$ -adrenoceptors located on the smooth muscle, thereby causing muscle relaxation, whereas  $\alpha$ -adrenoceptor agonists act by reducing the release of acetylcholine from the cholinergic nerves. The  $\alpha$ -adrenoceptors involved are located on the cholinergic nerve terminals (Knoll & Vizi, 1971; Kosterlitz & Lees, 1972).

The release of noradrenaline from sympathetic nerves is modulated by  $\alpha$ -adrenoceptors located at the nerve terminals. These presynaptic  $\alpha$ -adrenoceptors differ from postsynaptic  $\alpha$ -adrenoceptors in their sensitivity to agonists (Starke, Endo & Taube, 1975; Drew, 1976) and to antagonists (Dubocovich & Langer, 1974; Blakely & Summers, 1976; Drew, 1976). The presynaptic  $\alpha$ -adrenoceptors are characteristically less sensitive than the postsynaptic  $\alpha$ adrenoceptors to the agonist effects of phenylephrine and methoxamine and to the antagonist actions of thymoxamine, labetalol and phenoxybenzamine. Langer (1974) has suggested, therefore, that  $\alpha$ adrenoceptors should be subclassified as  $\alpha_1$  (postsynaptic type) and  $\alpha_2$  (presynaptic type).

The differential sensitivity of pre- and postsynaptic adrenoceptors to  $\alpha$ -adrenoceptor agonists and antagonists has been used to characterize the  $\alpha$ -adrenoceptors located on the cholinergic nerve terminals in the guinea-pig ileum. Segments of ileum were suspended under 0.5-1.0 g tension in Krebs solution, at 37°C, containing propranolol (0.3 µg/ml). Field stimulation (0.1 Hz; 1 ms; supramaximal voltage) was delivered using platinum electrodes, 12 mm apart, and the resulting twitch responses were recorded isometrically.

Agonists were added to the bathing fluid in a cumulative-concentration schedule. Clonidine (0.1-10 ng/ml), oxymetazoline (0.1-100 ng/ml) and xylazine (0.1-100 ng/ml) caused concentration dependent reductions in the twitch response. The maximum effects of these drugs corresponded to 85-95% inhibition of the twitch response. Phenylephrine and methoxamine were 1000-10,000 times less potent than clinidine.

Phentolamine (0.01, 0.1 and 1.0 µg/ml) and piperoxan (0.03, 0.1 and 0.3 µg/ml) were potent antagonists of the inhibitory effect of clonidine. In contrast, thymoxamine (1, 3 and 10 µg/ml) was only weakly active and labetalol (0.3 and 1 ug/ml) was inactive against clonidine.

These results suggest that the presynaptic  $\alpha$ adrenoceptors located on the parasympathetic nerve terminals in the guinea-pig ileum are of the same type as those located on cholinergic nerve terminals—that is  $\alpha_2$ .

## References

- BLAKELY, A.G.H. & SUMMERS, R.J. (1976). The effects of AH 5158 on the overflow of transmitter and the uptake of [3H]-(-)-noradrenaline in the cat spleen. Br. J. Pharmac., 56, 364P-365P.
- DREW, G.M. (1976). Effects of  $\alpha$ -adrenoceptor agonists and antagonists on pre- and postsynaptically located  $\alpha$ adrenoceptors. Eur. J. Pharmac., 36, 313-320.
- DUBOCOVICH, M.L. & LANGER, S.Z. (1974). Negative feedback regulation of noradrenaline release by nerve stimulation in the perfused cat's spleen: differences in potency of phenoxybenzamine in blocking the pre- and post-synaptic adrenergic receptors. J. Physiol. (Lond.), 237, 505-519.
- KNOLL, J. & VIZI, E.S. (1971). Effect of frequency of stimulation on the inhibition by noradrenaline of the acetylcholine output from parasympathetic nerve terminals. J. Physiol. (Lond.), 41, 263-272.
- KOSTERLITZ, H.W. & LEES, G.M. (1972). Interrelationships between adrenergic and cholinergic mechanisms. In Catecholamines, Handb. exp. Pharmac. ed. Blaschko, H. & Muscholl, E., pp. 762-812. N.S., vol. 33. Berlin and Heidelberg: Springer-Verlag.
- LANGER, S.Z. (1974). Presynaptic regulation of catecholamine release. Biochem. Pharmac., 23, 1793-1800.
- STARKE, K., ENDO, T. & TAUBE, H.D. (1975). Relative preand postsynaptic potencies of  $\alpha$ -adrenoceptor agonists in the rabbit pulmonary artery. Naunyn-Schmiedebergs Arch. Pharmac., 291, 55-78.